Binary Classification

Wel Xu

(many slides from Greg Durrett and Vivek Srikumar)



This and next Lecture

» Linear classification fundamentals

» Naive Bayes, maximum likelihood in generative models

» Three discriminative models: logistic regression, perceptron, SVM

» Different motivations but very similar update rules / inference!



Classification



Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again Negative

» Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

» Steps to classification:
» Turn examples like this into feature vectors
» Pick a model / learning algorithm

» Train weights on data to get our classifier



Feature Representation

this movie was great! would watch again Positive
» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =10 0 1 1 0

» Very large vector space (size of vocabulary), sparse features

» Requires indexing the features (mapping them to axes)



What are features?

» Don’t have to be just bag-of-words

count( “boring” )
count( “not boring”)
f (:L‘) __ | length of document
author of document

» More sophisticated feature mappings possible (tf-idf), as well as lots
of other features: character n-grams, parts of speech, lemmas, ...



Classification

» Datapoint & with label ¥ € {0, 1}

» Embed datapoint in a feature space f(z) € R"

but in this lecture f(x)and x are interchangeable

» Linear decision rule: w' f(z) +b > 0

w' f(z) >0

» Can delete bias if we augment feature space:

f(x)=1[0.5,1.6,0.3]
v
0.5, 1.6, 0.3, 1]




Dot Product (math review)

MATH REVIEW | DOT PRODUCTS

Given two vectors u# and v their dot product u - v is ) ;u, 0. The dot product
grows large and positive when u and v point in same direction, grows large
and negative when u# and v point in opposite directions, and is zero when

their are perpendicular. A useful geometric interpretation of dot products is
projection. Suppose ||u|| = 1, so that u# is a unit vector. We can think of any
other vector v as consisting of two components: (a) a component in the di-
rection of # and (b) a component that’s perpendicular to u. This is depicted b
(0.37,0.73). We

can think of v as the sum of two vectors, a and b, where a is parallel to # and b is perpendicular. The

geometrically to the right: Here, # = (0.8,0.6) and v

length of b is exactly u - v = 0.734, which is why you can think of dot products as projections: the dot
product between u and v is the “projection of v onto u.”

Credit: Hal Daumeé llI



Classification

» Datapoint g with label y € {0, 1}

» Embed datapoint in a feature space f(z) € R"

but in this lecture f(x) and ;- are interchangeable

» Linear decision rule: ' f(z) +b > 0 ﬁ / s
w' f(z) >0 \ k

» Can delete bias if we augment feature space: _ (
F(z)= 0% AE AP, WX T WX+ Wike +h 70 K

e
(0.5, 1.6, 0.3, 1]

= W' (R ) >O h /




Linear functions are powerful!
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Linear functions are powerful!

fix) = [x1, x2]

X1X2
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fix) = [x1, X2, x12, X22, X1X2]

» “Kernel trick” does this for “free,” but is too expensive to use in NLP
applications, training is O(n?) instead of O(n - (num feats))

http://ciml.info/dI/v0_99/ciml-vO_99-ch11.pdf
https://www.quora.com/Why-is-kernelized-SVM-much-slower-than-linear-SVM



https://www.quora.com/Why-is-kernelized-SVM-much-slower-than-linear-SVM
http://ciml.info/dl/v0_99/ciml-v0_99-ch11.pdf

Naive Bayes



Naive Bayes

» Data point = = (z1,...,x,), label y € {0,1}
» Formulate a probabilistic model that places a distribution P(x,y)

» Compute P(y|z), predict argmax, P(y|z) to classify

P(y|z) = P(?/})ZSUW) Bayes’ Rule




Naive Bayes

» Data point = (z4,...,x, ), label y € {0, 1}
» Formulate a probabilistic model that places a distribution P(z, )
» Compute P(y|z), predic( argma@f(ylw) to classify

T ayes’ Rule |\ A 209
P(y|$):P(y;fa§) y)  Bayes’ Rul P (Y /_\ ) L/




Naive Bayes
» Data point = = (z1,...,x,), label y € {0,1}

» Formulate a probabilistic model that places a distribution P(x, y)

» Compute P(y|z), predict argmax, P(y|z) to cla
P(y)P(z|y) Bayes’ Rule

P(z) - - constant: irrelevant
x P(y)P(z|y) for finding the max

P(y|lx) =

___— “Naive” assumption:

— P(y) Hp(xi\y) conditional indepen

argmax, P(y|r) = argmax, log P(y|r) = argmax,,

ssify

(%))

dence

log P(y +ZlogP z;|y)
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Why the log?

P(y])j;gew) — P(y) ﬁp(l’z"y)

1=1

P(y|r) =

» Multiplying together lots of probabilities

» Probabilities are numbers between 0 and 1

Q: What could go wrong here!



Why the log?

» Problem — floating point underflow

S | exponent significand
1 11 bits 52 bits
Largest=  1.111.x2*19%

- X log(x)
Smallest =  1.000_ X 2 ~1024 --

0.0000001 -16.118095651

. . . cre . o . 0.000001 -13.815511

» Solution: working with probabilities in log space S E—
0.0001 -9.210340

0.001 -6.907755

0.01 -4.605170

0.1 -2.302585



Maximum Likelihood Estimation

» Data points (z;,y,) provided (j indexes over examples)
» Find values of P(y), P(x;|y) that maximize data likelihood (generative):

HP(yja% = | [ P(y)) HP(xjiyj)]

J=1

T N

data points (j) features (i) ith feature of jth example




Maximum Likelihood Estimation
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» Imagine a coin flip which is heads with probability p

» Observe (H, H, H, T) and maximize likelihood: H P(y;) = p3(1 —p)

j=1
> E;\Lmer: maximize log likelihood og likelihood

Z log P(y,;) = 3logp+ log(1l — p) P(H) = 0.75

= P
n

http://fooplot.com/



http://fooplot.com/

Maximum Likelihood Estimation

» Imagine a coin flip which is heads with probability p

&
» Observe (H, H, H, T) and maximize likelihood: H P(y;) p3(1 — D)
K Q \j L fvf) ; J=1 - ‘

» Easi imize Iog |Ik€|lh00d

(P) '
log yj 33 log p + log(l — p)\
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log likelihood




» Imagine a coin flip which is heads with probability p
¢

» Observe (H, H, H, T) and maximize likelihood: H P(y;)
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Maximum Likelihood Estimation
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» Imagine a coin flip which is heads with probability p

» Observe (H, H, H, T) and maximize likelihood: H P(y;) = p3(1 —p)

j=1
> Ejlﬂer: maximize log likelihood og likelihood
Z log P(y,;) = 3logp+ log(1l — p) P(H) = 0.75
j=1 4 P
» Maximum likelihood parameters for binomial/ |

multinomial = read counts off of the data + normalize

http://fooplot.com/
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Binary Classification (cont’)

Wel Xu

(many slides from Greg Durrett and Vivek Srikumar)



Administrivia

» Readings & homework releases on course website:
https://cocoxu.github.io/CS4650 spring2022/

» Programming project O is released, due on #5208 Jan 25.

» Problem Set 1 is also released, due Feb 3.

» TA Office hours:

» Tuesday 4-5pm (Chao), Thursday 1-2pm (Rucha), Friday 10-11am (Chase)


https://cocoxu.github.io/CS4650_spring2022/

Classification (recap)

» Datapoint & with label ¥ € {0, 1}

» Embed datapoint in a feature space f(z) € R"

but in this lecture f(x)and x are interchangeable

» Linear decision rule: w' f(z) +b > 0
w' f(z) >0

» Can delete bias if we augment feature space:

f(x)=1[0.5,1.6,0.3]
v
0.5, 1.6, 0.3, 1]




Feature Representation (recap)

this movie was great! would watch again Positive
» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =10 0 1 1 0

» Very large vector space (size of vocabulary), sparse features

» Requires indexing the features (mapping them to axes)



Naive Bayes (recap)
» Data point = = (z1,...,x,), label y € {0,1}

» Formulate a probabilistic model that places a distribution P(x, y)

» Compute P(y|z), predict argmax, P(y|z) to classify

P(y)P(z|y) Bayes’ Rule
P(x) «

P(y|lx) =

___— “Naive” assumption:

- constant: irrelevant
x P(y)P(z|y) for finding the max

(%))

— P(y) Hp(xi\y) conditional independence

argmax, P(y|r) = argmax, log P(y|r) = argmax

Yy

log P(y +ZlogP T;|y)




Maximum Likelihood Estimation

» Data points (z;,y,) provided (j indexes over examples)
» Find values of P(y), P(x;|y) that maximize data likelihood:

L P@sz) = 1 Py)) HP(xjiyj)]

J=1

T N

data points (j) features (i) ith feature of jth example

» Equivalent to maximizing logarithm of data likelihood:

Zlog P(y;,z;) Z

71=1 71=1

log P(y;) ZlogP 5'732?17)]



Maximum Likelihood Estimation (recap
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» Imagine a coin flip which is heads with probability p

» Observe (H, H, H, T) and maximize likelihood: H P(y;) = p3(1 —p)

j=1
> Ejlﬂer: maximize log likelihood og likelihood
Z log P(y,;) = 3logp+ log(1l — p) P(H) = 0.75
j=1 4 P
» Maximum likelihood parameters for binomial/ |

multinomial = read counts off of the data + normalize

http://fooplot.com/
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Nalve Bayes: Learning

------------------------------------------------

------------------------------------------------

» Learning = estimate the parameters of the model

» Prior probability — P(+) and P(-):
» fraction of + (or -) documents among all documents

» Word likelihood — P(wordi| +) and P(wordi| -):

» number of + (or -) documents word; is observed, divide by the total
number of documents of + (or -) documents

This is for Bernoulli (binary features) document model!



Maximum Likelihood for Naive Bayes

--------------------------------------------------------------------------------------

this movie was great! would watch again | + P(+4) = 1 ~__

| liked it well enough for an action flick + ? prior

| expected a great film and left happy + P(—) = 5 —

- brilliant directing and stunning visuals + 1

that film was awful, I'll never watch again |— Plgreati+) = 2 N | W_Ord

| didn’t really like that movie — P(great|—) = i » likelihood
. dry and a bit distasteful, it misses the mark == e T ;

. great potential but ended up being a flop [— P(y|x) o< P(y) H P(zily) |

--------------------------------------------------------------------------------------
------------------------------------------------



Naive Bayes

» Bernoulli document model:
» A document is represented by binary features

» Feature value be 1 if the corresponding word is represent in
the document and O if not

» Multinominal document model:
» A document is represented by integer elements
» Feature value is the frequency of that word in the document
» See textbook and lecture note by Hiroshi Shimodaira linked below

for more details \

32
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Naive Bayes

Text Classification using Naive Bayes

Hiroshi Shimodaira*

10 February 2015

Text classification is the task of classifying documents by their content: that is, by the words of which
they are comprised. Perhaps the best-known current text classification problem is email spam filtering:
classifying email messages into spam and non-spam (ham).

1 Document models

Text classifiers often don’t use any kind of deep representation about language: often a document is
represented as a bag of words. (A bag is like a set that allows repeating elements.) This is an extremely
simple representation: it only knows which words are included in the document (and how many times
each word occurs), and throws away the word order!

Consider a document D, whose class is given by C. In the case of email spam filtering there are two
classes C =S (spam) and C = H (ham). We classify D as the class which has the highest posterior
probability P(C|D), which can be re-expressed using Bayes’ Theorem:

P(D|C)P(C)

P(C|D) = T P(D|C) P(C). (1)

We shall look at two probabilistic models of documents, both of which represent documents as a bag
of words, using the Naive Bayes assumption. Both models represent documents using feature vectors
whose components correspond to word types. If we have a vocabulary V, containing |V| word types,
then the feature vector dimension d=|V/|.

Bernoulli document model: a document is represented by a feature vector with binary elements
taking value 1 if the corresponding word is present in the document and 0 if the word is not
present.

Multinomial document model: a document is represented by a feature vector with integer elements
whose value is the frequency of that word in the document.

Example: Consider the vocabulary:
V = {blue, red, dog, cat, biscuit,apple} .

In this case |V|=d =6. Now consider the (short) document “the blue dog ate a blue biscuit”. If d®
is the Bernoulli feature vector for this document, and d¥ is the multinomial feature vector, then we

“Heavily based on notes inherited from Steve Renals and Iain Murray.

1

would have:

d® = (1,0,1,0,1,0)7
d" = (2,0,1,0,1,0)"

To classify a document we use equation (1), which requires estimating the likelihoods of the document
given the class, P(D|C) and the class prior probabilities P(C). To estimate the likelihood, P(D|C), we
use the Naive Bayes assumption applied to whichever of the two document models we are using.

2 The Bernoulli document model

As mentioned above, in the Bernoulli model a document is represented by a binary vector, which
represents a point in the space of words. If we have a vocabulary V containing a set of |V| words, then
the ¢ th dimension of a document vector corresponds to word w; in the vocabulary. Let b; be the feature
vector for the i th document D;; then the 7 th element of b;, written b;, is either O or 1 representing the
absence or presence of word w, in the i th document.

Let P(w,|C) be the probability of word w, occurring in a document of class C; the probability of w, not
occurring in a document of this class is given by (1 — P(w,|C)). If we make the naive Bayes assumption,
that the probability of each word occurring in the document is independent of the occurrences of the
other words, then we can write the document likelihood P(D; | C) in terms of the individual word
likelihoods P(w,|C):

\4
P(D;|C) ~ P(b;|C) = l_[ [biP(w;|C) + (1 = bir)(1 = P(w,|C))] . 2

=1

This product goes over all words in the vocabulary. If word w; is present, then b;, =1 and the required
probability is P(w,|C); if word w, is not present, then b;, =0 and the required probability is 1 — P(w,|C).
We can imagine this as a model for generating document feature vectors of class C, in which the
document feature vector is modelled as a collection of |V| weighted coin tosses, the ¢th having a
probability of success equal to P(w;|C).

The parameters of the likelihoods are the probabilities of each word given the document class P(w;|C);
the model is also parameterised by the prior probabilities, P(C). We can learn (estimate) these
parameters from a training set of documents labelled with class C =k. Let n,(w,) be the number of
documents of class C =k in which w; is observed; and let N; be the total number of documents of that
class. Then we can estimate the parameters of the word likelihoods as,

n(wy)

P(w, | C=k) = N
k

3
the relative frequency of documents of class C = k that contain word w,. If there are N documents

in total in the training set, then the prior probability of class C =k may be estimated as the relative
frequency of documents of class C =k:

Ny

B(C=k) = v @

Thus given a training set of documents (each labelled with a class), and a set of K classes, we can
estimate a Bernoulli text classification model as follows:

2

http://socialmedia-class.org/slides AU2017/Shimodaira noteQ7.pdf
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Zero Probability Problem

» What if we have seen no training document with the word “fantastic”
and classified in the topic positive?

» Laplace (add-1) Smoothing
» Word likelihood — P(wordi| +) and P(wordi| -):
» frequency of word; is observed plus 1, divide by ...



Nalve Bayes: Summary

» Model @

mn

P(z,y) = P(y) | | P(xily) (@)

1=1

» Inference

argmax, log P(y|r) = argmax, |log P(y) + Z log P(x;|y)
i=1
» Alternatively: log P(y — —|—‘$) — l()g P(y — —|Qj) > ()
n Linear model!
Py = Plx;|ly = . 5
pg:fi D log LU= = w f(x) >0

» Learning: maximize P(x,y) by reading counts off the data

& log




Problems with Naive Bayes

the film was beautiful, stunning cinematography and gorgeous sets, but boring —

P(Zbeautitul|+) = 0.1 P(Theautitul|—) = 0.01
P(Zstunning|+) = 0.1 P(Zgtunning|—) = 0.01
P(Zgorgeous|+) = 0.1 P(Zgorgeous|—) = 0.01
P(Zporing|+) = 0.01 P(Zboring|—) = 0.1

» Correlated features compound: beautiful and gorgeous are not independent!

» Naive Bayes is naive, but another problem is that it’s generative:
spends capacity modeling P(x,y), when what we care about is P(y|x)

» Discriminative models model P(y|x) directly (SVMs, most neural networks, ...)



Logistic Regression



Logistic Regression

-

P(y = +|z) = logistic(w ' x) )= T

Ply 1) - P wi) /
1+ exp(> ., wiz;) e

» Decisionrule: P(y=+|z) >05<w' z>0

» To learn weights: maximize discriminative log likelihood of data P(y|x)

L(zj,y; = +) = log P(y; = +lz;)

— szmﬂ log (1 + exp (Z wzxﬂ))
— i=1

sum over features



Logistic Regression

P(y = +|z) = logistic(w ' x)

- G_/D(Z w;T;)
Ply = +lz) = 1+ exp(E:z1 . wzxz)

\ / )
1l 4+ e
s@ ------ (T

» Decision rule: P(y = +|g;) > (0.5 < w ' > () (@XPL C_>>
» To learn weights: maximize discriminative log i lihood oﬁjata P(y|x)

W
L(zj,y; =+) = log P(y; = +|z;) V/ C

— 2”: w; T j; — log (1 + exp (2”: wz-a:jz))
‘ i=1

sum over features~ =




Gradient Decent

» Gradient decent (or ascent) is an iterative optimization algorithm for finding
the minimum (or maximum) of a function.

Repeat until convergence {
L Initial

. .
:’I/ Gradient

W= w — Q@ﬁ(?ﬂ)

/« ow

Global minimum ! learning rate (step size)




------------------------------------------------

. chain rule:

Logistic Regression: /=570

------------------------------------------------




Logistic Regression

» Recall that y; = 1 for positive instances, y; = 0 for negative instances.
» Gradient of w; on positive example = x;(y;, — P(y; = +|z;))

If P(+) is close to 1, make very little update
Otherwise make w;look more like x;;, which will increase P(+)

» Gradient of w; on negative example — :cjz-(—P(yj — —|—|£Ej))

If P(+) is close to 0, make very little update
Otherwise make w;look less like x;j;, which will decrease P(+)

OL(T;,Y;
(05; D iy — Plyy = 1))

» Can combine these gradients as



Gradient Decent
log Iikelihood{ic data P(y|x)  data points (j)

3£(6);ny) _ ZIZ‘j(yj — P(yj — 1|ajj))

» Can combine these gradients as

T

1
» Training set log-likelihood: L(w) = . Z L(z;,y;)
j=1

» Gradient vector: B =
W

([ ] ® ’

8w1 7 8w2 " 8@(}”

OL(w) ( oL 0L 0L >



Learning Rate

Too low Just right Too high

1(8) 1(0) J(6)

/

E
0 0 0
A sm.all learning rate The opt.lg:al Iear:mgh Too large of a learning rate
requires many updates fate swittly reacnes the causes drastic updates
befqre reach!ng the minimum point which lead to divergent
minimum point ‘behaviors

Credit: Jeremy Jordan



Optimization s

4 Gradient descent 8£(w) L\t'/// 3-D VIEW

W= W — o
ow

Q: What if loss changes quickly in one direction and slowly in another direction?

contour plot

SC==>ry

Credit: Stanford CS231n




Optimization s

» Gradient descent OL(w)
w =W —
Ow

Q: What if loss changes quickly in one direction and slowly in another direction?

contour plot

-

I| e >
e —>>

Solution: feature scaling! Credit: Stanford CS231n




Regularization

» Regularizing an objective can mean many things, including an
L2-norm penalty to the weights: m

> L(wj,y5) = Alwl3
j=1

/
N




Regularization

» Regularizing an objective can mean many things, including an
L2-norm penalty to the weights:  m I,

gﬁ(%yy‘) - @g_ll% @ >
V\\U\}K\ p)

= —

-
- | 2 2 -
_N NtV +NST *"Y?




Regularization

» Regularizing an objective can mean many things, including an L2-

norm penalty to the weights: m
> Lleguy) - Alwld
j=1

» Keeping weights small can prevent overfitting

» For most of the NLP models we build, explicit regularization isn’t necessary
» Early stopping
» Large numbers of sparse features are hard to overfit in a really bad way

» For neural networks: dropout and gradient clipping



Data to be classified
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Regularization

Decision Boundary for Logistic Regression Decision Boundary for Logistic Regression
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https://towardsdatascience.com/understanding-regularization-in-machine-learning-5a0369ac/73b9




Logistic Regression: Summary

» Model

P(y __ |ZE) __ eXp(Z?:l w’bx”&)
1+ GXp(Z?Zl QUZCIZZ)

» Inference

argmax, P(y|r) fundamentally same as Naive Bayes
Ply=1lz) >05<w' 2 >0

» Learning: gradient ascent on the (regularized) discriminative log-likelihood



Logistic Regression vs. Nalve Bayes

» Both are (log) linear models wa(gj)

» Logistic regression doesn’t assume conditional independence of features
» Can handle highly correlated overlapping features

» Naive Bayes assume conditional independence of features



Perceptron/SVM



Perceptron

» Simple error-driven learning approach similar to logistic regression

» Decisionrule: w 'z > 0 Logistic Regression

» If incorrect: if positive, w < w + @ w<+—w+x(l — Py =1|x))

if negative, w + w — x %wew—xP(y:Hx)

» Algorithm is very similar to logistic regression

» Guaranteed to eventually separate the data if the data are separable

http://ciml.info/dl/vO0 99/ciml-v0 99-ch04.pdf



http://ciml.info/dl/v0_99/ciml-v0_99-ch04.pdf

Perceptron

» Separating hyperplane

Two vectors have a zero dot product if and only if they are perpendicular



Linear Separability

» In general, two groups are linearly separable in n-dimensional space,
if they can be separated by an (n-1)-dimensional hyperplane.
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What does “converge” mean?

» It means that it can make an entire pass through the training data
without making any more updates.

» In other words, Perceptron has correctly classified every training
example.

» Geometrically, this means that it was found some hyperplane that
correctly segregates the data into positive and negative examples


http://ciml.info/dl/v0_99/ciml-v0_99-ch04.pdf
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Mark | Perceptron machine, the first =
implementation of the perceptron
algorithm. It was connected to a
camera with 20x20 cadmium sulfide
photocells to make a 400-pixel image.
The main visible feature is a patch
panel that set different combinations of
input features. To the right, arrays of
potentiometers that implemented the
adaptive weights.[?1213

original text are shown and corrected.

Perceptron

See also: History of artificial intelligence § Perceptrons and the attack on connectionism, and Al winter § The
abandonment of connectionism in 1969

The perceptron algorithm was invented in 1958 at the Cornell Aeronautical Laboratory by Frank Rosenblatt,®! funded by the United States Office of Naval Research.[*!

The perceptron was intended to be a machine, rather than a program, and while its first implementation was in software for the IBM 704, it was subsequently
implemented in custom-built hardware as the "Mark 1 perceptron". This machine was designed for image recognition: it had an array of 400 photocells, randomly
connected to the "neurons". Weights were encoded in potentiometers, and weight updates during learning were performed by electric motors.[21193

In a 1958 press conference organized by the US Navy, Rosenblatt made statements about the perceptron that caused a heated controversy among the fledgling Al
community; based on Rosenblatt's statements, The New York Times reported the perceptron to be "the embryo of an electronic computer that [the Navy] expects will
be able to walk, talk, see, write, reproduce itself and be conscious of its existence."*]

Although the perceptron initially seemed promising, it was quickly proved that perceptrons could not be trained to recognise many classes of patterns. This caused the
field of neural network research to stagnate for many years, before it was recognised that a feedforward neural network with two or more layers (also called a multilayer
perceptron) had greater processing power than perceptrons with one layer (also called a single layer perceptron).

Single layer perceptrons are only capable of learning linearly separable patterns. For a classification task with some step activation function a single node will have a
single line dividing the data points forming the patterns. More nodes can create more dividing lines, but those lines must somehow be combined to form more complex
classifications. A second layer of perceptrons, or even linear nodes, are sufficient to solve a lot of otherwise non-separable problems.

In 1969 a famous book entitled Perceptrons by Marvin Minsky and Seymour Papert showed that it was impossible for these classes of network to learn an XOR
function. It is often believed (incorrectly) that they also conjectured that a similar result would hold for a multi-layer perceptron network. However, this is not true, as
both Minsky and Papert already knew that multi-layer perceptrons were capable of producing an XOR function. (See the page on Perceptrons (book) for more
information.) Nevertheless, the often-miscited Minsky/Papert text caused a significant decline in interest and funding of neural network research. It took ten more years
until neural network research experienced a resurgence in the 1980s. This text was reprinted in 1987 as "Perceptrons - Expanded Edition" where some errors in the

The kernel perceptron algorithm was already introduced in 1964 by Aizerman et al.[’! Margin bounds guarantees were given for the Perceptron algorithm in the general non-separable case first by Freund and
Schapire (1998),!'] and more recently by Mohri and Rostamizadeh (2013) who extend previous results and give new L1 bounds.!®!

The perceptron is a simplified model of a biological neuron. While the complexity of biological neuron models is often required to fully understand neural behavior, research suggests a perceptron-like linear
model can produce some behavior seen in real neurons.’!

PhD 1956 from Cornell



Perceptron - artificial neuron
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Figure from https://jontysinai.github.io/jekyll/update/2017/1 1/1 |/the-perceptron.html



Support Vector Machines

» Many separating hyperplanes — is there a best one?
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Support Vector Machines

» Many separating hyperplanes — is there a best one?
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» The hyperplane lies exactly halfway between
the nearest positive and negative example.



Support Vector Machines

» Many separating hyperplanes — is there a best one?
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Support Vector Machines

» Constraint formulation: find w via following quadratic program:

Minimize ||w)||2

minimizing norm with

s.t. V) w x; fixed margin <=>

- maximizing margin
Ww QZj

As a single constraint:
Vi (2y; — D)(w ' z;) > 1

» Generally no solution (data is generally non-separable) — need slack!



N-Slack SVMs

T
Minimize Al|wl|3 + ) &
j=1

Image credit: Laneg Van
http:?/www.cs.toronto.edu/"‘mbrubake/teaching/Cl1/Handouts/SupportVectorIVIachines.pdf




N-Slack SVMs

T
Minimize Al|wl|3 + ) &
j=1

st V) 2y — D(w ' z;) > 1§

» The & are a “fudge factor” to make all constraints satisfied

» Take the gradient of the objective:

Y . 0 |

» Looks like the perceptron! But updates more frequently

http://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/SupportVectorMachines.pdf




LR, Perceptron, SVM

» Gradients on Positive Examples

Logistic regression |

x(l — logistic(w ' z))

Hinge (SVM)

Perceptron

:13 if w'z <0, else 0

SVM (ighoring regularizer) O-1|}.' /lLogistic _
T | |Perceptron R W'z
ritw <1, else 0 3 2 - 0 1 > 3

*gradients are for maximizing things, which is why they are flipped

http://ciml.info/dl/vO 99/ciml-vO 99-ch0Q7.pdf




Sentiment Analysis

this movie was great! would watch again +

the movie was gross and overwrought, but | liked it | =+

this movie was not really very enjoyable —

» Bag-of-words doesn’t seem sufficient (discourse structure, negation)

» There are some ways around this: extract bigram feature for “not X" for
all X following the not

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)



Sentiment Analysis

Features # of | frequency or [[ NB | ME SVM
| | features | presence? || | |

(1) ‘ unigrams ‘ 16165 ‘ freq. H 78.7 ‘ N/A ‘ 72.8 |
)] vungiams | | pres. | 810 | 804] 829
() | anigrams bigrams | 32330 | pres. [ 806 | 808 ] 82.7
(4) DIgrams 16165 pres. | 77.3 | 77.4 77.1
(5) unigrams+POS 16695 pres. | 81.5 | 80.4 81.9
(6) adjectives 2633 pres. | 77.0 | 77.7 75.1
(7) | top 2633 unigrams | 2633 pres. | 80.3 | 81.0 | 81.4 |
(8) l unigrams-position l 22430 l pres. I] 81.0 l 80.1 I 81.6 |

» Simple feature sets can do pretty well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)



Sentiment Analysis

Method RT-s MPQA
MNB-uni 7719 8353
MNB-bi1

SVM-uni 76.2  86.1
SVM-bi 717  86.7
NBSVM-umm | 78.1  85.3
NBSVM-bi 794  86.3
RAE 76.8  85.7
RAE-pretrain | [77.7  86.4
Voting-w/Rev. | 63.1 81.7
Rule 629  81.8
BoF-noDic. 75.7 81.8
BoF-w/Rev. 764  84.1
Tree-CRF 71.3 86.1
BoWSVM — —

Kim (2014) CNNs [81.5 89.5

720 86.3 | «—— Naive Bayes is doing well!

Ng and Jordan (2002) — NB
can be better for small data

Before neural nets had taken off
— results weren’t that great

Wang and Manning (2012)



Recap

» Logistic regression: p(y _ Hx) _ CXP (Zizl wﬂ?’z)

(14 exp (D, wiz;))
Decisionrule:  P(y=1|z) > 05<w' x>0

Gradient (unregularized): x(y — P(y = 1|x))

» Logistic regression, perceptron, and SVM are closely related

» All gradient updates: “make it look more like the right thing and less like the
wrong thing”



Optimization — next ...

» Range of techniques from simple gradient descent (works pretty well)
to more complex methods (can work better), e.g., Newton’s method,
Quasi-Newton methods (LBFGS), Adagrad, Adadelta, etc.

» Most methods boil down to: take a gradient and a step size, apply the
gradient update times step size, incorporate estimated curvature
information to make the update more effective



QA Time

DO YOU HAVE

ANY QUESTIONS?




