
Transformer	(cont’)	+	Course	Project

Wei	Xu
(many slides from Greg Durrett)



This	Lecture

‣ Decoding	in	seq2seq	models

‣ Other	applications	of	Seq2Seq	(beyond	MT)

‣ Frontiers	in	MT	Research

‣ Wrap	up	with	the	Transformer	model

‣ Final	course	project



Transformers



Recap:	Self-Attention

Vaswani	et	al.	(2017)

The	ballerina	is	very	excited	that	she	will	dance	in	the	show.

‣ Want:

‣ LSTMs/CNNs:	tend	to	look	at	local	context

The	ballerina	is	very	excited	that	she	will	dance	in	the	show.

‣ To	appropriately	contextualize	embeddings,	we	need	to	pass	information	
over	long	distances	dynamically	for	each	word



Recap:	Self-Attention

Vaswani	et	al.	(2017)

the		movie		was			great

‣ Each	word	forms	a	“query”	which	then	
computes	attention	over	each	word	

‣ Multiple	“heads”	analogous	to	different	convolutional	filters.	Use	
parameters	Wk	and	Vk	to	get	different	attention	values	+	transform	vectors

x4

x0
4

scalar

vector	=	sum	of	scalar	*	vector

↵i,j = softmax(x>
i xj)

x0
i =

nX

j=1

↵i,jxj

↵k,i,j = softmax(x>
i Wkxj) x0

k,i =
nX

j=1

↵k,i,jVkxj



Recap:	What	can	self-attention	do?

Vaswani	et	al.	(2017)

The	ballerina	is	very	excited	that	she	will	dance	in	the	show.

‣ Why	multiple	heads?	Softmaxes	end	up	being	peaked,	single	distribution	
cannot	easily	put	weight	on	multiple	things

0.5 0.20.10.10.10 0 0 0 0 0 0

‣ This	is	a	demonstration,	we	will	revisit	what	these	models	actually	learn	
when	we	discuss	BERT

‣ Attend	nearby	+	to	semantically	related	terms

0.5 0 0.40 0.1 0 0 0 0 0 0 0



Recap:	Multi-Head	Self	Attention

Vaswani	et	al.	(2017)

‣ Multiple	“heads”	analogous	to	different	convolutional	filters

‣ Let	X	=	[sent	len,	embedding	dim]	be	the	input	sentence

‣ Query	Q	=	WQX:	these	are	like	the	decoder	hidden	state	in	attention

‣ Keys	K	=	WKX:	these	control	what	gets	attended	to,	along	with	the	query

‣ Values	V	=	WVX:	these	vectors	get	summed	up	to	form	the	output

dim	of	keys



Recap:	Single-Head	Self	Attention

Credit:	Alammar,	The	Illustrated	Transformer



Recap:	Single-Head	Self	Attention

Credit:	Alammar,	The	Illustrated	Transformer



Recap:	Single-Head	Self	Attention

sent	len	x	hidden	dim

Z	is	a	weighted	combination	of	V	rows

sent	len	x	sent	len	(attn	for	
each	word	to	each	other)

Credit:	Alammar,	The	Illustrated	Transformer

every	row	in	X	is	a	word	in	input	sent



Recap:	Multi-Head	Self	Attention

Credit:	Alammar,	The	Illustrated	Transformer



12

Transformer	Uses

‣ Supervised:	transformer	can	replace	LSTM	as	encoder,	decoder,	or	both;	
will	revisit	this	when	we	discuss	MT

‣ Unsupervised:	transformers	work	be8er	than	LSTM	for	unsupervised	
pre-training	of	embeddings:	predict	word	given	context	words

‣ BERT	(BidirecPonal	Encoder	
RepresentaPons	from	Transformers):	
pretraining	transformer	language	models	
similar	to	ELMo

‣ Stronger	than	similar	methods,	SOTA	on	~11	
tasks	(including	NER	—	92.8	F1)

such	as	in	machine	translation	and	natural	language	generation	tasks.	

Vaswani	et	al.	(2017)

‣ Encoder	and	decoder	are	both	transformers

‣ Decoder	consumes	the	previous	generated	
token	(and	attends	to	input),	but	has	no	
recurrent	state

Transformer	Uses

‣ Many	other	details	to	get	it	to	work:	residual	
connections,	layer	normalization,	positional	
encoding,	optimizer	with	learning	rate	
schedule,	label	smoothing	….



Transformer	Uses

‣ Unsupervised:	transformers	work	better	than	LSTM	for	unsupervised	
pre-training	of	embeddings	—	predict	word	given	context	words

‣ BERT	(Bidirectional	Encoder	
Representations	from	Transformers):	
pretraining	transformer	language	models	
similar	to	ELMo	(based	on	LSTM)

‣ Stronger	than	similar	methods,	SOTA	on	~11	
tasks	(including	NER	—	92.8	F1)



Visualization

Vaswani	et	al.	(2017)



Visualization

Vaswani	et	al.	(2017)



Visualization

Vaswani	et	al.	(2017)



Useful	Resources



Other	Transformer	Variations

Press	et	al.	(2020)

‣ Multilayer	transformer	networks	consist	of	interleaved	self-attention	and	
feedforward	sublayers.


‣ Could	ordering	the	sublayers	in	a	different	pattern	lead	to	better	
performance?



Other	Applications	of	Seq2Seq



Regex	Prediction

‣ Seq2seq	models	can	be	used	for	many	other	tasks!

‣ Predict	regex	from	text

‣ Problem:	requires	a	lot	of	data:	10,000	examples	needed	to	get	~60%	
accuracy	on	pretty	simple	regexes

Locascio	et	al.	(2016)



Semantic	Parsing	as	Translation

Jia	and	Liang	(2015)

‣ Write	down	a	linearized	form	of	the	semantic	parse,	train	seq2seq	models	
to	directly	translate	into	this	representation

‣ Might	not	produce	well-formed	logical	forms,	might	require	lots	of	data

“what	states	border	Texas”

‣ No	need	to	have	an	explicit	grammar,	simplifies	algorithms

https://www.youtube.com/watch?v=OocGXG-BY6k&t=200sSemantic	Parsing/Lambda	Calculus:

https://www.youtube.com/watch?v=OocGXG-BY6k&t=200s


SQL	Generation

‣ Convert	natural	language	
description	into	a	SQL	
query	against	some	DB

‣ How	to	ensure	that	well-
formed	SQL	is	generated?

Zhong	et	al.	(2017)

‣ Three	components

‣ How	to	capture	column	
names	+	constants?

‣ Pointer	mechanisms



Decoding	Strategies



Greedy	Decoding
‣ Generate	next	word	conditioned	on	previous	word	as	well	as	hidden	state

the		movie		was			great

‣ During	inference:	need	to	compute	the	argmax	over	the	word	predictions	
and	then	feed	that	to	the	next	RNN	state.	This	is	greedy	decoding

le					

<s>

film était bon [STOP]

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄)

ypred = argmaxyP (y|x, y1, . . . , yi�1)
<latexit sha1_base64="BKzIm/yKraU6a64Z2EgswwSRmsQ=">AAADX3ichVLBattAEF3LbZM6aeK0p9LLUmOQaGKktJBcCqG99OhCnQQsI1arlbNkpRW7o9hC3Z/srdBL/6Qr2y2xU5MBwejNzHtvh4kLwTX4/s+W037y9NnO7vPO3v6Lg8Pu0ctLLUtF2YhKIdV1TDQTPGcj4CDYdaEYyWLBruLbz0396o4pzWX+DaqCTTIyzXnKKQELRUetsh+aTn/oznCY8QTPojoENgeV1ZbnzhgPf8Rhqgj9h1NZ5mDcWbTWeIxnnnmkx3tcSVjrCdmmuDGxRXOT1+B32A3wyV92bwv9PS6QQASeSZXgZdV0qjXexJjG7gogapqRuYkqPHQr/N0+kMBNnNZza7GKgmOrnEjQzU/NTwLjRd2eP/AXgR8mwSrpoVUMo+6PMJG0zFgOVBCtx4FfwMQKA6eCmU5YalYQekumbGzTnGRMT+rFfRjct0iCU6nslwNeoPcnapJpXWWx7WyM681aA/6vNi4hPZ/UPC9KYDldCqWlwCBxc2w44YpREJVNCFXcesX0htjdgz3Jjl1CsPnkh8nl6SB4Pzj9+qF38Wm1jl30Br1FLgrQGbpAX9AQjRBt/XIcZ8/Zd363d9oH7e6y1WmtZl6htWi//gMykBmH</latexit>

(or	attention/copying/etc.)



Problems	with	Greedy	Decoding

‣ Only	returns	one	solution,	and	it	may	not	be	optimal

‣ Can	address	this	with	beam	search,	which	usually	works	better…but	even	
beam	search	may	not	find	the	correct	answer!	(max	probability	sequence)

Stahlberg	and	Byrne	(2019)

A sentence is classified as search error if the decoder
does not find the global best model score.



“Problems”	with	Beam	Decoding
‣ For	machine	translation,	the	highest	probability	sequence	is	often	the	
empty	string,	i.e..	a	single	</s>	token!			(>50%	of	the	time)

Stahlberg	and	Byrne	(2019)

‣ Beam	search	results	in	fortuitous	search	errors	that	avoid	these	bad	
solutions

‣ Exact	inference	uses	depth-first	search,	but	cut	off	branches	that	fall	
below	a	lower	bound.	



Sampling
‣ Beam	search	may	give	many	similar	sequences,	and	these	actually	may	be	
too	close	to	the	optimal.	Can	sample	instead:

‣ Text	degeneration:	greedy	solution	can	be	uninteresting	/	vacuous	for	
various	reasons.	Sampling	can	help.

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄)

ysampled ⇠ P (y|x, y1, . . . , yi�1)
<latexit sha1_base64="PRMh0d0POdeSz1TX/ixzw2HuV+c=">AAADU3ichVNNbxMxEPUmfJRAaQpHLiOiSBvRRtmCBBekCi4cg0TaStlo5fV6W6ve9cqe7Xa1+D8iJA78ES4cwPkA2pSoI1kav5l5bzwax4UUBkej716rfefuvftbDzoPH20/3unuPjkyqtSMT5iSSp/E1HApcj5BgZKfFJrTLJb8OD5/P48fX3BthMo/YV3wWUZPc5EKRtFB0a4n+qHt9Md+BWEmEqiiJkR+iTprHM+FtQN4C2GqKfuLM1XmaP0qupa4B9XA3pIzuF1JutYTuklxrWKD5jqvhRfgB7D/h32wgf4KFyqkEiqlE1hGbaf+x2toVkieWAuhERmM/Ro+u0dRPIvT5tK1VUfBnlNLFJr5pRH7gR1E3d5oOFoY3HSCldMjKxtH3a9holiZ8RyZpMZMg1GBs4ZqFExy2wlLwwvKzukpnzo3pxk3s2axExb6DkkgVdqdHGGBXq1oaGZMncUuc964WY/Nwf/FpiWmb2aNyIsSec6WQmkpARXMFwwSoTlDWTuHMi1cr8DOqJs3ujXsuCEE60++6RwdDIOXw4OPr3qH71bj2CLPyHPik4C8JofkAxmTCWHeF++H96tFWt9aP9vulyxTW96q5im5Zu3t3+LjFz8=</latexit>



Beam	Search	vs.	Sampling

Holtzman	et	al.	(2019)



Decoding	Strategies

‣ Greedy

‣ Beam	search

‣ Sampling	(e.g.,	top-k	or	Nucleus	sampling)

‣ Nucleus:	take	the	top	p%	(95%)	of	the	distribution,	sample	from	
within	that

‣ Top-k:	take	the	top	k	most	likely	words	(k=5),	sample	from	those



Beam	Search	vs.	Sampling

Holtzman	et	al.	(2019)

‣ These	are	samples	from	an	unconditioned	language	model	(not	seq2seq	
model)

‣ Sampling	is	better	but	sometimes	draws	too	far	from	the	tail	of	the	
distribution



Generation	Tasks

Unconditioned	sampling/ 
e.g.,	story	generation

Dialogue Translation

Summarization
Text-to-code

Less	constrained More	constrained

Data-to-text

‣ There	are	a	range	of	seq2seq	modeling	tasks	we	will	address

‣ For	more	constrained	problems:	greedy/beam	decoding	are	usually	best

‣ For	less	constrained	problems:	nucleus	sampling	introduces	favorable	
variation	in	the	output

Text-to-text



Final	Project



Final	Project

‣ Groups	Size:	2-4	people;	1	is	possible	(email	me	for	permission).


‣ Submission:	up	to	4	page	report	(including	everything)	+	final	presentation.


‣ Prize:	We	will	give	out	1-3	best	project	awards.	


‣ Shared	project	with	other	classes	is	allowed	


‣ project	is	expected	to	be	accordingly	bigger/better


‣ clearly	declare	at	the	beginning	of	your	report	that	you	are	sharing	project	
(with	which	class)


‣ External	collaborators	(non	CS4650	students)	are	also	allowed


‣ clearly	describe	in	the	report	which	parts	of	the	projects	are	your	work

🏆



Finding	Research	Topics
‣ Two	basic	starting	points,	for	all	of	science:


‣ Nails	—	start	with	a	(domain)	problem	of	interest	and	try	to	find	
good/better	ways	to	address	it	than	are	currently	known/used


‣ Hammers	—	start	with	a	technical	method/approach	of	interest,	
and	work	out	good	ways	to	extend	or	improve	it	or	new	ways	to	
apply	it

Credit:	Stanford	CS224n



Typical	Project	Types

‣ 1)	Find	an	application/task	of	interest	and	explore	how	to	approach/solve	
it	effectively,	often	with	an	existing	model

‣ Could	be	task	in	the	wild	or	some	existing	Kaggle	competition	or	
shared	task	(e.g..	WNUT	or	SemEval,	etc.)


‣ Or	dialogue	system		(prepare	for	Amazon	Alexa	Challenges	next	year)

‣ 2)	Analyze	the	behavior	of	models	or	existing	datasets	

‣ how	the	model	represents	linguistic	knowledge	or	what	kinds	of	
phenomena	it	can	handle	or	errors	that	it	makes.


‣ what	linguistic	phenomena/errors	exist	in	the	dataset,	how	they	
affect	model	performance	(see	Idea	#3	for	an	example).	

‣ This	is	not	an	exhaustive	list	—



Typical	Project	Types

‣ 3)	Create	a	new	dataset,	conduct	some	analysis,	train	a	prediction	model

‣ for	a	new	topic/task	(see	Idea	#1	and	#2	for	an	example),	or	for	an	
existing	task	but	better	way	to	create	higher	quality	dataset


‣ may	involve	some	manual	annotation	

‣ conduct	some	quantitive	and	linguistic	analyses

‣ 4)	Implement	a	complex	neural	architecture	and	demonstrate	its	
performance	on	some	data,	especially	for	non-English	data


‣ 5)	Come	up	with	a	new	or	variant	neural	network	model	and	explore	its	
empirical	success	(but	this	has	become	harder	since	2020	—	)

‣ This	is	not	an	exhaustive	list	—



Place	to	start?
‣ Look	at	ACL	Anthology	for	NLP	papers:

‣ https://aclanthology.org/	


‣ Also	look	at	the	online	proceedings	of	major	ML/Web	conferences	

‣ ICLR,	NeurIPS	,	ICML

‣ ICWSM	(https://www.icwsm.org/2021/)	


‣ Look	at	online	preprint	servers,	especially:	

‣ https://arxiv.org/


‣ Look	for	an	interesting	problem	in	the	world!

‣ Psycholinguistics	(e.g.,	Idea	#1),	computational	social	science,	
journalism,	…

https://aclanthology.org/
https://www.icwsm.org/2021/
https://arxiv.org/


Finding	Data
‣ Some	people	collect	their	own	data	for	a	project	—	we	like	that!	


‣ You	may	have	a	project	that	uses	“unsupervised”	data

‣ You	can	annotate	a	small	amount	of	data	

‣ You	can	find	a	website	that	effectively	provides	annotations,	such	as	
likes,	starts,	rating,	responses,	etc.	


‣ Look	at	research	papers	to	see	what	data	they	use,	how	they	get	it

‣ Many	others	make	use	of	existing	datasets	built	by	other	researchers

‣ Shared	task	at	WNUT,	SemEval,	etc.

‣ Kaggle	competition

‣ Datasets	used	in	other	papers	(e.g.	https://aclanthology.org/)

https://aclanthology.org/


An	Example
‣ Define	Task 

‣ Define	Dataset

‣ Provide	basic	data	statistics

‣ If	your	own	data	—	

‣ steps	you	take	to	collect/clean/annotate	the	data

‣ provide	some	examples,	quality	control	(this	is	important!)



An	Example
‣ Experiments


‣ right	from	the	beginning,	separate	off	train/dev/test	splits

‣ search	online	for	well-established	metrics	on	this	task

‣ establish	some	baselines

‣ Implement	existing	neural	network	model		

‣ compute	metrics	on	train	&	dev,	not	test	set

‣ analyze	outputs	and	errors


‣ Going	beyond	—	try	out	different	models,	increasing	quality/quantitive	
of	your	dataset,	data	argumentation,	and	other	“researchy”	ideas!



Final	Project	Writeup/Presentation
‣ Up	to	4-page	writeup	due	the	day	before	final	exam	date	(no	late	submission!)

‣ Use	LaTeX	template	from	ACL	

‣ Include	references;	statement	of	each	group	members’	contribution

‣ Writeup	quality	is	important	to	your	grade!

‣ X-minute	oral	presentation	at	the	final	exam	time	(X	∈	[5,	10])

Credit:	Stanford	CS224n



Frontiers	in	MT



Low-Resource	MT

Aji	et	al.	(2020)

‣ Particular	interest	in	deploying	MT	systems	for	languages	with	little	or	no	
parallel	data

Burmese,	Indonesian,	Turkish

‣ BPE	allows	us	to	transfer	
models	even	without	
training	on	a	specific	
language

‣ Pre-trained	models	can	
help	further



Massively	Multilingual	MT
‣ For	103	languages	

Arivazhagan	et	al.	(2019),	Kudugunta	et	al.	(2019)



Unsupervised	MT

‣ Common	principles	of	unsupervised	MT

‣ Language	models

‣ (Iterative)	Back-translation!

Lample	et	al.	(2018)



Non-Autoregressive	NMT

46

‣ Q:	why	non-autoregressive?	Pros	and	cons?

Gu	et	al.	(2018),	Ghazvininejad	et	al.	(2019),	Kasai	et	al.	(2020)



Efficiency	of	NMT



Have	fun	with	your	project!	


