Transformer (cont’) + Course Project

Wel Xu

(many slides from Greg Durrett)



This Lecture

> Wrap up with the Transformer model

~ Other applications of Seq2Seq (beyond MT)
> Decoding in seq2seq models

> Frontiers in MT Research

> Final course project



Transformers



Recap: Self-Attention

> Want:

/_\/\/\

The ballerina is very excited that she will dance in the show.

» LSTMs/CNNs: tend to look at local context

The ballerina is very excited that she will dance in the show.

>~ To appropriately contextualize embeddings, we need to pass information
over long distances dynamically for each word

Vaswani et al. (2017)



Recap: Self-Attention

>~ Each word forms a “qguery” which then
computes attention over each word EI EI EI
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>~ Multiple “heads” analogous to different convolutional filters. Use
parameters Wy and Vi to get different attention values + transform vectors
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Vaswani et al. (2017)



Recap: What can self-attention do?
‘/\/\/\

The ballerina is very excited that she will dance in the show.
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>~ Attend nearby + to semantically related terms

> This is a demonstration, we will revisit what these models actually learn
when we discuss BERT

> Why multiple heads? Softmaxes end up being peaked, single distribution

cannot easily put weight on multiple things
Vaswani et al. (2017)
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Recap: Multi-Head Self Attention

Multiple “heads” analogous to different convolutional filters

Let X = [sent len, embedding dim] be the input sentence

Query Q = WAX: these are like the decoder hidden state in attention

Keys K = WKX: these control what gets attended to, along with the query

> Values V = WVX: these vectors get summed up to form the output

Attention(Q, K,V') = softmax(

QK"

Vg

1%

= dim of keys

Vaswani et al. (2017)



Recap: Single-Head Self Attention

Input

Embedding

Queries

Keys

Values

Credit: Alammar, The lllustrated Transformer



Recap: Single-Head Self Attention

Input

Embedding

Queries of op.

Keys

Values

Score i ® 1 ®

Divide by 8 ( Vd;. )
QK"

Vg

Attention(Q, K, V) = softmax( 1%

Softmax

Softmax
X

Sum

Credit: Alammar, The lllustrated Transformer




Recap: Single-Head Self Attention

every row in X is a word in input sent
sent len x sent len (attn for

each word to each other)

softmax( )

sent len x hidden dim

/ is a weighted combination of V rows

Credit: Alammar, The lllustrated Transformer



Recap: Multi-Head Self Attention

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting =~ matrices,
Input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices Q/K/V matrices produce the output of the layer
X Wo
Ral QO
N | I[ [I ]
W;0
*In all encoders otherthan#0, [/ VWi Q1
we don't need embedding. —:J II[ II[ Ii‘ T
We start directly with the output 171 Bl

of the encoder right below this one

‘‘‘‘‘‘‘‘

Credit: Alammar, The lllustrated Transformer



Transformer Uses

» Supervised: transformer can replace LSTM as encoder, decoder, or both;
such as in machine translation and natural language generation tasks.
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> Encoder and decoder are both transformers

> Decoder consumes the previous generated
token (and attends to input), but has no
recurrent state

> Many other details to get it to work: residual
connections, layer normalization, positional
encoding, optimizer with learning rate

schedule, label smoothing ....
Vaswani et al. (2017)



Transformer Uses

> Unsupervised: transformers work better than LSTM for unsupervised
pre-training of embeddings — predict word given context words

~ BERT (Bidirectional Encoder
Representations from Transformers):

pretraining transformer language models BERT (Ours)
similar to ELMo (based on LSTM)

> Stronger than similar methods, SOTA on ~11
tasks (including NER — 92.8 F1)




Visualization
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Visualization
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Visualization
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Useful Resources

nn.Transtormer:

>>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
>>> src = toxrch.rand((10, 32, 512))

>>> tgt = toxrch.rand((20, 32, 512))
>>> out = transformer_model(sxrc, tgt)

nn.TransformerEncoder:

>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)

>>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
>>> src = torch.rand(10, 32, 512)
>>> out = transformer _encoder(src)



Other Transformer Variations

>~ Multilayer transformer networks consist of interleaved self-attention and
feedforward sublayers.

> Could ordering the sublayers in a different pattern lead to better
performance?
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Press et al. (2020)



Other Applications of Seq2Seq



Regex Prediction

> Seg2seq models can be used for many other tasks!

> Predict regex from text

Natural Language Encoder

. Q <END>
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LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM
Yo ol w2 W3
lines ending in ‘Q’

Regular Expression Decoder

> Problem: requires a lot of data: 10,000 examples needed to get ~“60%

accuracy on pretty simple regexes
Locascio et al. (2016)



Semantic Parsing as Translation

“What states border Texas”

'

A X state( X ) A borders( x , e89 )

> Write down a linearized form of the semantic parse, train seq2seq models
to directly translate into this representation

> No need to have an explicit grammar, simplifies algorithms

> Might not produce well-formed logical forms, might require lots of data

Semantic Parsing/Lambda Calculus: https:/www.youtube.com/watch?v=00cGXG-BY6k&{=200s J Id an d LI d ng (20 1 5)



https://www.youtube.com/watch?v=OocGXG-BY6k&t=200s

SQL Generation

Question:

> Convert natural language
description into a SQL
guery against some DB

[How many CFL teams are from York CoIIege?J

SQL:

SELECT COUNT CFL Team FROM
CFLDraft WHERE College = “York”,

N

» How to ensure that well-

: 'How many \ Seq250QL SELECT
formed SQL is generated?  |cnginetypesdid | . .
3 Val Musetti use? gigsg;eﬁg:;uon > COUNT
> ( ™\ . I
Three components Entrant e .
Constructor > vointer » Engine
i >
>~ How to capture column (Ei:alsns.les | fWHEREdaae 1 [ommm
names + constants? o pointer > Driver =
Driver decoder ) Val Musetti

> Pointer mechanisms
Zhong et al. (2017)



Decoding Strategies



Greedy Decoding

> Generate next word conditioned on previous word as well as hidden state

L

the movie was great <$>

> During inference: need to compute the argmax over the word predictions
and then feed that to the next RNN state. This is greedy decoding

P(y;|x,y1,...,yi—1) = softmax(Wh) (or attention/copying/etc.)

Ypred = argmaXyP(mx, Yls s Yio1)



Problems with Greedy Decoding

> Only returns one solution, and it may not be optimal

> Can address this with beam search, which usually works better...but even
beam search may not find the correct answer! (max probability sequence)

Model Beam-10
BLEU #Search err.
LSTM™ 28.6 58.4%
SliceNet™ 28.8 46.0%
Transformer-Base 30.3 57.7%
Transformer-Big”™ 31.7 32.1%

N\

A sentence is classified as search error if the decoder
does not find the global best model score.

Stahlberg and Byrne (2019)



“Problems™ with Beam Decoding

> For machine translation, the highest probability sequence is often the
empty string, i.e.. a single </s> token! (>50% of the time)

Search BLEU Ratio #Search errors #Empty
Greedy 293 1.02 73.6% 0.0%
Beam-10 30.3 1.00 S7.7% 0.0%
Exact 2.1 0.06 0.0% 51.8%

» Beam search results in fortuitous search errors that avoid these bad
solutions

» Exact inference uses depth-first search, but cut off branches that fall

below a lower bound.
Stahlberg and Byrne (2019)



Sampling

> Beam search may give many similar sequences, and these actually may be
too close to the optimal. Can sample instead:

P(y;|x,y1,...,y;_1) = softmax(Wh)

Ysampled " P(y‘Xa Y1, - - 7yi—1)

- Text degeneration: greedy solution can be uninteresting / vacuous for
various reasons. Sampling can help.
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Decoding Strategies

> Greedy
> Beam search

> Sampling (e.g., top-k or Nucleus sampling)
>~ Top-k: take the top k most likely words (k=5), sample from those

* Nucleus: take the top p% (95%) of the distribution, sample from
within that



Beam Search vs. Sampling

> These are samples from an unconditioned language model (not seqg2seq
model)

Context: In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley,
in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

Beam Search, b=32: Pure Sampling:
"The study, published in the Proceedings of the They were cattle called Bolivian Cavalleros; they live in a
National Academy of Sciences of the United States of remote desert uninterrupted by town, and they speak huge,

America (PNAS), was conducted by researchers from the beautiful, paradisiacal Bolivian linguistic thing. They say,
Universidad Nacional Auténoma de México (UNAM) and ‘Lunch, marge.' They don't tell what the lunch is," director

the Universidad Nacional Autonoma de México Professor Chuperas Omwell told Sky News. "They've only
(UNAM/Universidad Nacional Auténoma de been talking to scientists, like we're being interviewed by TV
Mexico/Universidad Nacional Autonoma de reporters. We don't even stick around to be interviewed by
México/Universidad Nacional Auténoma de TV reporters. Maybe that's how they figured out that they're
México/Universidad Nacional Autonoma de ..." cosplaying as the Bolivian Cavalleros."

> Sampling is better but sometimes draws too far from the tail of the

distribution
Holtzman et al. (2019)



Generation Tasks

> There are a range of seg2seq modeling tasks we will address
>~ For more constrained problems: greedy/beam decoding are usually best

> For less constrained problems: nucleus sampling introduces favorable
variation in the output

Less constrained More constrained
Unconditioned sampling/ Dialogue Translation Text-to-code
e.g., story generation Summarization

Data-to-text Text-to-text



Final Project



>

Final Project

Groups Size: 2-4 people; 1 is possible (email me for permission).
Submission: up to 4 page report (including everything) + final presentation.
Prize: We will give out 1-3 best project awards. ‘Y

Shared project with other classes is allowed
> project is expected to be accordingly bigger/better

> clearly declare at the beginning of your report that you are sharing project
(with which class)

External collaborators (non CS4650 students) are also allowed
> clearly describe in the report which parts of the projects are your work



Finding Research Topics

>~ Two basic starting points, for all of science:

> Nails — start with a (domain) problem of interest and try to find
good/better ways to address it than are currently known/used

> Hammers — start with a technical method/approach of interest,
and work out good ways to extend or improve it or new ways to

apply it

Credit: Stanford CS224n



Typical Project Types

> This is not an exhaustive list —

> 1) Find an application/task of interest and explore how to approach/solve
it effectively, often with an existing model

> Could be task in the wild or some existing Kaggle competition or
shared task (e.g.. WNUT or SemEval, etc.)

> Or dialogue system (prepare for Amazon Alexa Challenges next year)

> 2) Analyze the behavior of models or existing datasets

> how the model represents linguistic knowledge or what kinds of
phenomena it can handle or errors that it makes.

> what linguistic phenomena/errors exist in the dataset, how they
affect model performance (see Idea #3 for an example).



Typical Project Types

> This is not an exhaustive list —

>~ 3) Create a new dataset, conduct some analysis, train a prediction model

> for a new topic/task (see Idea #1 and #2 for an example), or for an
existing task but better way to create higher quality dataset

* may involve some manual annotation
> conduct some quantitive and linguistic analyses

~ 4) Implement a complex neural architecture and demonstrate its
performance on some data, especially for non-English data

> 5) Come up with a new or variant neural network model and explore its
empirical success (but this has become harder since 2020 — )



Place to start?

Look at ACL Anthology for NLP papers:
> https://aclanthology.org/

Also look at the online proceedings of major ML/Web conferences
> ICLR, NeurlPS, ICML
> ICWSM (https://www.icwsm.org/2021/)

Look at online preprint servers, especially:
> https://arxiv.org/

Look for an interesting problem in the world!

>~ Psycholinguistics (e.g., Idea #1), computational social science,
journalism, ...


https://aclanthology.org/
https://www.icwsm.org/2021/
https://arxiv.org/

Finding Data

> Some people collect their own data for a project — we like that!
> You may have a project that uses “unsupervised” data
> You can annotate a small amount of data

> You can find a website that effectively provides annotations, such as
likes, starts, rating, responses, etc.

> Look at research papers to see what data they use, how they get it

> Many others make use of existing datasets built by other researchers
> Shared task at WNUT, SemEval, etc.
» Kaggle competition

- Datasets used in other papers (e.g. https://aclanthology.org/)


https://aclanthology.org/

An Example

> Define Task

> Define Dataset
> Provide basic data statistics
> |f your own data —
~ steps you take to collect/clean/annotate the data
> provide some examples, quality control (this is important!)



An Example

~ EXperiments
> right from the beginning, separate off train/dev/test splits

> search online for well-established metrics on this task

> establish some baselines
» Implement existing neural network model
> compute metrics on train & dev, not test set

> analyze outputs and errors

>~ Going beyond — try out different models, increasing quality/quantitive
of your dataset, data argumentation, and other “researchy” ideas!



Final Project Writeup/Presentation

~ Up to 4-page writeup due the day before final exam date (no late submission!)
> Use LaTeX template from ACL

> Include references; statement of each group members’ contribution

> Writeup quality is important to your grade!

» X-minute oral presentation at the final exam time (X € [5, 10])

Abstract Prior related

Model
Introduction work Model

Analysis &

Experiments Results .
Data P Conclusion

Credit: Stanford CS224n




Frontiers in MT



Low-Resource MT

> Particular interest in deploying MT systems for languages with little or no

parallel data

» BPE allows us to transfer
models even without
training on a specific
language

> Pre-trained models can
help further

Burmese, Indonesian, Turkish

BLEU
Transfer My—En Id—En Tr—En
baseline (no transfer) 4.0 20.6 19.0
transfer, train 17.8 274 20.3

transfer, train, reset emb, train 13.3 25.0 20.0
transfer, train, reset inner, train 3.6 18.0 19.1

Table 3: Investigating the model’s capability to restore
its quality i1if we reset the parameters. We use En—De
as the parent.

Aji et al. (2020)



Massively Multilingual MT

> For 103 languages
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Unsupervised MT

Approach Train/Val Test Loss

Supervised MT L1-L2 L1-L2 MT 5
L:r—m = L(x,y)~(X,)) [—log p;,,_.,y(y\x)]

U ised MT 2L L2 L1-L2 T o
nsupervise L:Ir}(iy = Foeri¥ [—log py—m:(x'g*(x))]

+4- Zy,\,y [—lOg p.r—H/(y‘h’*(y))]

g”,h™: sentence predictors

> Common principles of unsupervised MT

> Language models
> (Iterative) Back-translation!

Lample et al. (2018)
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Non-Autoregressive NMT

B ————— — P —————————— —

= e i e e i R e i i i e i R Eh | e e i S i e i e i (i i e i i v i i

e e e s s s s s s s s s Gaas  Saas  Geas  Gaas e e e e e e s s s s s s s s e s G S e s e e

> Q: why non-autoregressive? Pros and cons?

Gu et al. (2018), Ghazvininejad et al. (2019), Kasai et al. (2020)



Efficiency of NMT

SIXTH CONFERENCE ON
MACHINE TRANSLATION (WMT21)

November 10-11, 2021
Punta Cana (Dominican Republic) and Online

Shared Task: Efficiency

[HOME] [SCHEDULE] [PAPERS]| [AUTHORS] [RESULTS]
TRANSLATION TASKS: [NEWS] [SIMILAR LANGUAGES] [BIOMEDICAL] [EUROPEAN LOW RES MULTILINGUAL] [LARGE-SCALE MULTILINGUAL]
[TRIANGULAR MT]
[EFFICIENCY] [TERMINOLOGY] [UNSUP AND VERY LOW RES] [LIFELONG LEARNING]
EVALUATION TASKS: [QUALITY ESTIMATION] [METRICS]
OTHER TASKS: [AUTOMATIC POST-EDITING]

Efficiency Task

The efficiency task measures latency, throughput, memory consumption, and size of machine translation on CPUs and GPUs. Participants provide their own code and models
using standardized data and hardware. This is a continuation of the WNGT 2020 Efficiency Shared Task.




Have fun with your project!



