
Seq2Seq + A(en*on

Wei Xu
(many slides from Greg Durrett)



This & Next Lecture
‣ Sequence-to-Sequence Model

‣ A(en*on Mechanism 

‣ Neural MT & Other Applica*ons

‣ Copy/Pointer Network

‣ Transformer Architecture



Administrivia

‣ Reading — Eisenstein 18.3-18.5

‣ Addi*onal Reading — h(p://mt-class.org/jhu/



Recall: CNNs vs. LSTMs

‣ Both LSTMs and convolu*onal layers transform the input using context

the movie was good the movie was good

n x k

c filters, 
m x k each

O(n) x c

n x k

n x 2c

BiLSTM with 
hidden size c

‣ LSTM: “globally” looks at the en*re sentence (but local for many problems)

‣ CNN: local depending on filter width + number of layers



Encoder-Decoder
‣ Encode a sequence into a fixed-sized vector

the  movie  was   great

‣ Now use that vector to produce a series of tokens as output from a 
separate LSTM decoder

le      film   était   bon [STOP]

Sutskever et al. (2014)

‣ Machine transla*on, NLG, summariza*on, dialog, and many other tasks 
(e.g., seman*c parsing, syntac*c parsing) can be done using this framework. 



Model
‣ Generate next word condi*oned on previous word as well as hidden state

the  movie  was   great <s>

h̄

‣ W size is |vocab| x |hidden state|, sohmax over en*re vocabulary

Decoder has separate 
parameters from encoder, so 
this can learn to be a language 
model (produce a plausible next 
word given current one)

P (y|x) =
nY

i=1

P (yi|x, y1, . . . , yi�1)

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄)



Inference
‣ Generate next word condi*oned on previous word as well as hidden state

the  movie  was   great

‣ During inference: need to compute the argmax over the word predic*ons 
and then feed that to the next RNN state 

le     

<s>

‣ Need to actually evaluate computa*on graph up to this point to form 
input for the next state

‣ Decoder is advanced one state at a *me un*l [STOP] is reached

film était bon [STOP]



Implemen*ng seq2seq Models

the  movie  was   great

‣ Encoder: consumes sequence of tokens, produces a vector. Analogous to 
encoders for classifica*on/tagging tasks

le     

<s>

‣ Decoder: separate module, single cell. Takes two inputs: hidden state 
(vector h or tuple (h, c)) and previous token. Outputs token + new state

Encoder

…

film     

le

Decoder



Training

‣ Objec*ve: maximize

the  movie  was   great <s> le      film   était   bon

la

‣ One loss term for each target-sentence word, feed the correct word 
regardless of model’s predic*on (this is what called “teacher forcing”)

[STOP]était

X

(x,y)

nX

i=1

logP (y⇤i |x, y⇤1 , . . . , y⇤i�1)



Training: Scheduled Sampling

‣ Star*ng with p = 1 and decaying it works best

‣ Scheduled sampling: with probability p, take the gold (human) transla5on 
as input, else take the model’s predic*on

the  movie  was   great

la      film   étais   bon [STOP]

le film était

‣ Model needs to do the right thing even with its own predic*ons

Bengio et al. (2015)

sample



Implementa*on Details
‣ Sentence lengths vary for both encoder and decoder:

‣ Typically pad everything to the right length

‣ Batching is a bit tricky:  
‣ encoder should use pack_padded_sequence to handle 

different lengths.  
‣ The decoder should pad everything to the same length 

and use a mask to only accumulate “valid” loss terms

‣ Encoder: Can be a CNN/LSTM/Transformer…



Implementa*on Details (cont’)

‣ Beam search: can help with lookahead. Finds the (approximate) highest 
scoring sequence:

argmaxy

nY

i=1

P (yi|x, y1, . . . , yi�1)

‣ Decoder:

‣ Test *me: execute one step of computa*on at a *me, so computa*on 
graph is formulated as taking one input + hidden state. Un*l reach 
<STOP>.

‣ Training *me: you can execute all *mesteps as part of one 
computa*on graph



Beam Search
‣ Maintain decoder state, token history in beam

la: 0.4     

<s>

la

le

les

le: 0.3
les: 0.1     

log(0.4)
log(0.3)

log(0.1)

film: 0.4

la

…

film: 0.8     

le

… le 
film

la 
film

log(0.3)+log(0.8)

…

log(0.4)+log(0.4)

‣ Keep both film states! Hidden state vectors are different

the  movie  was   great

‣ NMT usually use beam <=5
Meister et al. (2020)



A(en*on



Problems with Seq2seq Models

‣ Need some no*on of input coverage or what input words we’ve 
translated

‣ Encoder-decoder models like to repeat themselves:

A boy plays in the snow boy plays boy playsUn garçon joue dans la neige

‣ Ohen a byproduct of training these models poorly. Input is forgo(en by 
the LSTM so it gets stuck in a “loop” of genera*on the same output 
tokens again and again. 



Problems with Seq2seq Models

‣ Bad at long sentences: 1) a fixed-size hidden representa*on doesn’t scale; 
2) LSTMs s*ll have a hard *me remembering for really long sentences

RNNenc: the model we’ve 
discussed so far 

RNNsearch: uses a(en*on

Bahdanau et al. (2014)



Problems with Seq2seq Models

‣ Unknown words:

‣ Encoding these rare words into a vector space is really hard

‣ In fact, we don’t want to encode them, we want a way of directly 
looking back at the input and copying them (Pont-de-Buis)

Jean et al. (2015), Luong et al. (2015)



Aligned Inputs

<s>      le      film   était   bon

the   movie  was   great

the movie was great

le film était bon

‣ Suppose we knew the source and 
target would be word-by-word 
translated

‣ In that case, we could look at 
the corresponding input word 
when transla*ng — might 
improve handling of long 
sentences!

le      film   était    bon   [STOP]

‣ How can we achieve this without hardcoding it?



A(en*on

the  movie  was   great <s> le

the
movie was

gre
atthe

movie was
gre

at

… …

‣ At each decoder state, 
compute a distribu*on over 
source inputs based on 
current decoder state
‣ Use the weighted sum of input 

tokens to predict output



A(en*on

the  movie  was   great

h1 h2 h3 h4

<s>

h̄1

‣ For each decoder state, 
compute weighted sum of 
input states

eij = f(h̄i, hj)

ci =
X

j

↵ijhj

c1

‣ Some func*on f  
(next slide)

‣ Weighted sum 
of input hidden 
states (vector)

le

↵ij =
exp(eij)P
j0 exp(eij0)

P (yi|x, y1, . . . , yi�1) = softmax(W [ci; h̄i])

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄i)‣ No a(n: 

the
movie was
gre

at



A(en*on

<s>

h̄1

eij = f(h̄i, hj)

ci =
X

j

↵ijhj

c1

‣ Note that this all uses outputs of hidden layers

f(h̄i, hj) = tanh(W [h̄i, hj ])

f(h̄i, hj) = h̄i · hj

f(h̄i, hj) = h̄>
i Whj

‣ Bahdanau+ (2014): addi*ve

‣ Luong+ (2015): dot product

‣ Luong+ (2015): bilinear

le

↵ij =
exp(eij)P
j0 exp(eij0)



What can a(en*on do?
‣ Learning to copy — how might this work?

Luong et al. (2015)

0 3 2 1 

0 3 2 1 

‣ LSTM can learn to count with the right weight matrix

‣ This is a kind of posi*on-based addressing



What can a(en*on do?
‣ Learning to subsample tokens

Luong et al. (2015)

0 3 2 1 

3 1

‣ Need to count (for ordering) and also determine which tokens are in/
out

‣ Content-based addressing



A(en*on

‣ Decoder hidden states are now 
mostly responsible for selec*ng 
what to a(end to

‣ Doesn’t take a complex hidden 
state to walk monotonically 
through a sentence and spit 
out word-by-word transla*ons

‣ Encoder hidden states capture 
contextual source word iden*ty 
(“soh” word alignment) 



the  movie  was   great

Batching A(en*on

Luong et al. (2015)

the  movie  was   great

token outputs: batch size x sentence length x dimension

sentence outputs: 
batch size x hidden size

<s>

hidden state: batch size 
x hidden size

eij = f(h̄i, hj)

↵ij =
exp(eij)P
j0 exp(eij0)

aFen5on scores = batch size x sentence length

c = batch size x hidden size ci =
X

j

↵ijhj

‣ Make sure tensors are the right size!



Results
‣ Machine transla*on: BLEU score of 14.0 on English-German -> 16.8 with 

a(en*on, 19.0 with smarter a(en*on (constrained to a small windows)

Luong et al. (2015) 
Chopra et al. (2016) 
Jia and Liang (2016)

‣ Summariza*on/headline genera*on: bigram recall from 11% -> 15%

‣ Seman*c parsing: ~30-50% accuracy -> 70+% accuracy on Geoquery



Neural MT



Encoder-Decoder MT

Sutskever et al. (2014)‣ SOTA = 37.0 — not all that compe**ve…

‣ Sutskever et al. (2014) paper: first major applica*on of LSTMs to NLP

‣ Basic encoder-decoder with beam search

‣ Kalchbrenner & blunsom (2013), Bahanau et al. (2014), Cho et al. (2014)



Encoder-Decoder MT

‣ Be(er encoder-decoder with a(en*on and copying for rare words

the  movie  was   great

h1 h2 h3 h4

<s>

h̄1

c1

distribu*on over vocab + copying

…

le



Results: WMT English-French

Classic phrase-based system: ~33 BLEU, uses addi*onal target-language data

Rerank with LSTMs: 36.5 BLEU (long line of work here; Devlin+ 2014)

Sutskever+ (2014) seq2seq single: 30.6 BLEU

Sutskever+ (2014) seq2seq ensemble: 34.8 BLEU

‣ But English-French is a really easy language pair and there’s tons of data 
for it! Does this approach work for anything harder?

Luong+ (2015) seq2seq ensemble with a(en*on and rare word handling: 
37.5 BLEU

‣ 12M sentence pairs



Results: WMT English-German

‣ Not nearly as good in absolute BLEU, but not really comparable across 
languages

Classic phrase-based system: 20.7 BLEU

Luong+ (2014) seq2seq: 14 BLEU

‣ French, Spanish = easiest 
German, Czech = harder 
Japanese, Russian = hard (gramma*cally different, lots of morphology…)

Luong+ (2015) seq2seq ensemble with rare word handling: 23.0 BLEU

‣ 4.5M sentence pairs



“Early” Neural MT

Luong et al. (2015)

‣ TensorFlow first released in Nov 2015.  
‣ PyTorch first released in 2016.



MT Examples

Luong et al. (2015)

‣ NMT systems can hallucinate words, especially when not using a(en*on 
— phrase-based doesn’t do this

‣ best = with a(en*on, base = no a(en*on



MT Examples

Luong et al. (2015)

‣ best = with a(en*on, base = no a(en*on



Tokeniza*on



Handling Rare Words
‣ Words are a difficult unit to work with: copying can be cumbersome, 

word vocabularies get very large 

‣ Character-level models don’t work well 

Input: _the _eco tax _port i co _in   _Po nt - de - Bu is …

Output: _le _port ique _éco taxe _de _Pont - de - Bui s

‣ Solu*on:  “word pieces” (which may be full words but may be subwords) 
‣

‣ Can help with translitera*on; capture shared linguis*c characteris*cs 
between languages (e.g., translitera*on, shared word root, etc.)

Wu et al. (2016)



Byte Pair Encoding (BPE)

‣ Count bigram character cooccurrences

Sennrich et al. (2016)

‣ Merge the most frequent pair of 
adjacent characters

‣ Do this either over your vocabulary (original version) or over a large 
corpus (more common version) 
‣ Final vocabulary size is ohen in 10k ~ 30k range for each language

‣ Start with every individual byte (basically character) as its own symbol 

‣ Most SOTA NMT systems use this on both source + target



Word Pieces

‣ SentencePiece library from Google: unigram LM

Build a language model over your corpus

Merge pieces that lead to highest improvement in language model 
perplexity

while voc size < target voc size:

‣ Result: way of segmen*ng input appropriate for transla*on

‣ Alterna*ve to BPE



Comparison

Bostrom and DurreF (2020)

‣ BPE produces less linguis*cally plausible units than word pieces 
(unigram LM)

‣ Some evidence that unigram LM works be(er in pre-trained 
transformer models



Google NMT



Google’s NMT System

Wu et al. (2016)
‣ 8-layer LSTM encoder-decoder with a(en*on, word piece vocabulary of 

8k-32k 



Google’s NMT System

Wu et al. (2016)

Luong+ (2015) seq2seq ensemble with rare word handling: 37.5 BLEU
Google’s 32k word pieces: 38.95 BLEU

Google’s phrase-based system: 37.0 BLEU
English-French:

Luong+ (2015) seq2seq ensemble with rare word handling: 23.0 BLEU
Google’s 32k word pieces: 24.2 BLEU

Google’s phrase-based system: 20.7 BLEU
English-German:



Human Evalua*on (En-Es)

Wu et al. (2016)

‣ Similar to human-level 
performance on 
English-Spanish



Google’s NMT System

Wu et al. (2016)

Gender is correct in GNMT 
but not in PBMT

“sled”
“walker”

The right-most column shows the human ra*ngs on a 
scale of 0 (complete nonsense) to 6 (perfect transla*on)



Fron*ers in MT



Low-Resource MT

Aji et al. (2020)

‣ Par*cular interest in deploying MT systems for languages with li(le or no 
parallel data

Burmese, Indonesian, Turkish
‣ BPE allows us to transfer 

models even without 
training on a specific 
language

‣ Pre-trained models can 
help further



Non-Autoregressive NMT

47

‣ Q: why non-autoregressive? Pros and cons?

Gu et al. (2018), Ghazvininejad et al. (2019), Kasai et al. (2020)



Unsupervised MT

‣ Common principles of unsupervised MT

‣ Language models 
‣ (Itera*ve) Back-transla*on!

Lample et al. (2018)



Takeaways
‣ Can build MT systems with LSTM encoder-decoders, CNNs, or 

Transformers

‣ Word piece / byte pair models are really effec*ve and easy to use

‣ State of the art systems are ge~ng pre(y good, but lots of challenges 
remain, especially for low-resource se~ngs


